A GENERALIZED POINCARÉ THEOREM FOR DUAL LIE TRANSFORMATION GROUPS

TUONG TON-THAT

ABSTRACT. Let k and n be integers such that k > 2n > 0. Let M be the complex analytic manifold defined by $M = \{x \in \mathbb{C}^{n \times k} : xx^t = 0, \text{ rank } (x) = n\}$. Let $G = \text{SO}(k, \mathbb{C})$ and $G' = \text{GL}(n, \mathbb{C})$, then Witt's theorem on quadratic forms implies that G is a maximal connected Lie group acting transitively on M by right multiplication. Also, G' is a maximal connected Lie group acting freely on M by left multiplication. If $f \in C^{\infty}(M), x \in M, g \in G$, and $g' \in G'$ define R(g)f (resp. L(g')f) by

$$(R(g)f)(x) = f(xg)$$
 and $(L(g)f)(x) = f(g^{-1}x)$.

If $\mathcal{D}^{\omega}(M)$ denotes the algebra of all analytic differential operators on M then an element $D \in \mathcal{D}^{\omega}(M)$ is called right (resp. left)-invariant if $DR(g) = R(g)D, \forall g \in G$ (resp. $DL(g') = L(g')D, \forall g' \in G'$).

THEOREM: Let $\mathcal{D}_{l}^{\omega}(M)$ (resp. $\mathcal{D}_{r}^{\omega}(M)$) denote the subalgebra of $\mathcal{D}^{\omega}(M)$ of all left (resp. right)-invariant analytic differential operators on M. Let $\tilde{\mathcal{U}}(\mathfrak{g})$ (resp. $\tilde{\mathcal{U}}(\mathfrak{g}')$) denote the universal enveloping algebra generated by the infinitesimal action of R(g) (resp. L(g')). Then we have

$$\mathcal{D}_{l}^{\omega}(M) = \widetilde{\mathcal{U}}(\mathfrak{g}) \text{ and } \mathcal{D}_{r}^{\omega}(M) = \widetilde{\mathcal{U}}(\mathfrak{g}').$$

Moreover, the commutant of $\mathcal{D}_l^{\omega}(M)$ in $\mathcal{D}^{\omega}(M)$ is $\mathcal{D}_r^{\omega}(M)$, and vice-versa.

This theorem also holds for other types of dual Lie transformation groups acting on analytic manifolds.

2000 Mathematics Subject Classification: Primary 15A63, 16S32; Secondary 16S30, 14L35.

TUONG TON-THAT

1 INTRODUCTION

In 1900 H. Poincaré established the existence of the universal enveloping algebra of a Lie algebra and proved one of the most fundamental results in the theory of Lie groups and Lie algebras. This theorem which is valid for a Lie algebra over an arbitrary field is usually called the Poincaré-Birkhoff-Witt theorem; however for the case of a real or complex Lie algebra it is entirely due to Poincaré as shown in [TT-T].

THEOREM 1.1 (Poincaré). Let G be a real or complex Lie group with Lie algebra \mathfrak{g} . Let $\mathcal{U}(\mathfrak{g})$ denote the universal enveloping algebra of \mathfrak{g} . If $\{X_i : 1 \leq i \leq n\}$ is a basis of \mathfrak{g} then the ordered monomials 1 and $X_{i_1} \cdots X_{i_s} (s \geq 1, i_1 \leq \cdots \leq i_s)$ form a basis for $\mathcal{U}(\mathfrak{g})$.

Assume that G is a real or complex *connected* Lie group. For each $g \in G$, the translations $l_g, r_g : G \to G$ defined by $l_g(x) = gx$ and $r_g(x) = xg$, $x \in G$, are analytic diffeomorphisms of G onto itself. Let $\mathcal{D}^{\omega}(G)$ denote the algebra of all analytic differential operators on G. A differential operator D of $\mathcal{D}^{\omega}(G)$ is said to be *left* (resp. *right)-invariant* if it is invariant under all left (resp. right) translations. Let $[\cdot, \cdot]$ denote the commutator product of $\mathcal{D}^{\omega}(G)$. If \mathcal{A} is a subalgebra of $\mathcal{D}^{\omega}(G)$ then the *centralizer* (or *commutant*) of \mathcal{A} in $\mathcal{D}^{\omega}(G)$ is defined as the set $\{D' \in \mathcal{D}^{\omega}(G) : [D', D] = 0, \forall D \in \mathcal{A}\}$, and the *centre* of \mathcal{A} is defined as the set $\{D' \in \mathcal{A} : [D', D] = 0, \forall D \in \mathcal{A}\}$. Then the following can be easily deduced from the Poincaré theorem.

COROLLARY 1.2 (To Poincaré Theorem). If $\mathcal{D}_{l}^{\omega}(G)$ (resp. $\mathcal{D}_{r}^{\omega}(G)$) denotes the subalgebra of $\mathcal{D}^{\omega}(G)$ of all left (resp. right)-invariant analytic differential operators on G then $\mathcal{D}_{l}^{\omega}(G)$ (resp. $\mathcal{D}_{r}^{\omega}(G)$) is isomorphic to the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$. Moreover, the centralizer of $\mathcal{D}_{l}^{\omega}(G)$ in $\mathcal{D}^{\omega}(G)$ is $\mathcal{D}_{r}^{\omega}(G)$, and viceversa. Finally, the centres of $\mathcal{D}_{l}^{\omega}(G)$ and $\mathcal{D}_{r}^{\omega}(G)$ coincide with $\mathcal{D}_{l}^{\omega}(G) \cap \mathcal{D}_{r}^{\omega}(G)$.

In the context of Lie transformation groups on analytic manifolds the corollary above can be phrased as follows: Consider G as a G-transformation group acting on the analytic manifold M = G to the right and as a G'-transformation acting on M to the left; then the subalgebras of all left (resp. right)-invariant analytic differential operators on the analytic manifold M are mutual commutants in $\mathcal{D}^{\omega}(M)$. We shall generalize this result to dual transformation groups acting on analytic manifolds. The simplest case with $G = \operatorname{GL}(k, \mathbb{C})$, $G' = \operatorname{GL}(n, \mathbb{C}), M = \{x \in \mathbb{C}^{n \times k} : x \text{ of maximum rank}\}$ was considered in [TT5]. In this article three more cases are considered. They are more intricate and Witt's theorems on quadratic forms and skew-symmetric bilinear forms play a crucial role in their resolution. The general case will be considered in a future publication.

2 A DUALITY THEOREM FOR COMMUTANTS IN $\mathcal{D}^{\omega}(M)$

Let $E = \mathbb{C}^{n \times k}$, $G = \mathrm{SO}(k, \mathbb{C})$, $G' = \mathrm{GL}(n, \mathbb{C})$. Then it is clear that G'(resp. $\mathrm{GL}(k, \mathbb{C})$) is the maximum linear group acting on E by left (resp. right) multiplication. As a subgroup of $\mathrm{GL}(k, \mathbb{C})$, G acts on E by right multiplication and leaves the nondegenerate symmetric bilinear form $(x, y) \to \mathrm{tr}(xy^t)$, $x, y \in \mathbb{C}^{n \times k}$, invariant. If $S(E^*)$ is the symmetric algebra of all polynomial functions on E then the action of G on E induces an action of G on $S(E^*)$, denoted by $g \cdot p$, for $g \in G$, $p \in S(E^*)$. We say that $p \in S(E^*)$ is G-invariant if $g \cdot p = p$, for all $g \in G$. The G-invariant polynomial functions form a subalgebra $J(E^*)$ of $S(E^*)$. If $J_+(E^*)$ is the subset of all elements in $J(E^*)$ without constant term we let $J_+(E^*)S(E^*)$ denote the ideal in $S(E^*)$ generated by $J_+(E^*)$. Recall ([We, Theorem 2.9A]) that $J_+(E^*)S(E^*)$ is generated by the n(n+1)/2algebraically independent polynomials

$$p_{ij}(x) = \sum_{s=1}^{k} x_{is} x_{js}, \qquad 1 \le i \le j \le n, \quad x \in E,$$
(2.1)

together with the $(k \times k)$ minors of the matrix x (which are 0 when k > n). If P is the null cone of the common zeros of polynomial functions in $J_+(E^*)S(E^*)$ then by the Hilbert Nullstellensatz the ideal in $S(E^*)$ of all polynomial functions which vanish on P is $\sqrt{J_+(E^*)S(E^*)}$. By [D-TT, Theorem 2.1] the ideal $J_+(E^*)S(E^*)$ is prime if and only if k > 2n, and the scheme P which is then equal to the set $\{x \in E : xx^t = 0\}$ is a complete intersection, with one open dense orbit.

Henceforth we assume that k > 2n. Let $M = \{x \in E : xx^t = 0, \operatorname{rank}(x) = n\}$ then obviously M is dense in P. Since $(g'x)(g'x)^t = g'(xx^t)(g')^t$ it follows immediately that G' is the maximum linear group acting on M by left multiplication. For $\gamma \in \operatorname{GL}(k, \mathbb{C})$ and $p \in S(E^*)$ define $R(\gamma)p$ by $(R(\gamma)p)(x) = p(x\gamma)$, then clearly γ leaves M, and hence P, invariant if and only if $R(\gamma)p_{ij} \in J_+(E^*)S(E^*)$ for all $1 \leq i \leq j \leq n$. Obviously, $R(\gamma)p_{ij}$ are quadratic polynomials, and since the p_{ij} form a basis for the quadratic polynomials in $J_+(E^*)S(E^*)$ we have

$$R(\gamma)p_{ij} = \sum_{r,s} C_{rs}^{ij} p_{rs}, \qquad 1 \le r \le s \le n,$$
(2.2)

where $C_{rs}^{ij} \in \mathbb{C}$ are constants depending on γ . For $1 \leq i \leq n, 1 \leq t \leq k$ let x(i,t) denote the element of E which has the (i,t)-entry equal to 1 and all other entries equal 0. Then an easy computation shows that

$$(R(\gamma)p_{ii})(x(i,t)) = \sum_{l=1}^{k} \gamma_{ll}^2 = \sum_{r,s} C_{rs}^{ii} p_{rs}(x(i,t)) = C_{ii}^{ii}.$$

It follows that $\sum_{l=1}^{k} \gamma_{tl}^2 = C \in \mathbb{C}$ for all t, and i. Choose x of the form

x(i,t) + x(i,t') with $t \neq t'$ then we obtain

$$(R(\gamma)p_{ii})(x(i,t) + x(i,t')) = \sum_{l=1}^{k} (\gamma_{tl} + \gamma_{t'l})^2$$

= $\sum_{r,s} C_{rs}^{ii} p_{rs}(x(i,t) + x(i,t'))$
= $2C_{ii}^{ii} = 2C.$

Thus

$$\sum_{l=1}^{k} (\gamma_{tl} + \gamma_{t'l})^2 = \sum_{l=1}^{k} \gamma_{tl}^2 + \sum_{l=1}^{k} \gamma_{t'l}^2 + 2\sum_{l=1}^{k} \gamma_{tl} \gamma_{t'l}' = 2C$$
$$= C + C + 2\sum_{l=1}^{k} \gamma_{tl} \gamma_{t'l}.$$

It follows that we have the system of equations

$$\sum_{l=1}^{k} \gamma_{tl}^{2} = C, \qquad \sum_{l=1}^{k} \gamma_{tl} \gamma_{t'l} = 0 \qquad \text{for all } t, t' = 1, \dots, k, \ t \neq t', \tag{2.3}$$

or equivalently, $\gamma^t \gamma = CI_k$.

Since $(\det(\gamma))^2 = C^k$ and γ is invertible it follows that $C \neq 0$. Let λ be a fixed square root of C and set $g = \frac{1}{\lambda}\gamma$, then $g^tg = I_k$, or $g \in O(k, \mathbb{C})$. It follows that the largest group acting on M by right multiplication is $\mathbb{C}^*O(k, \mathbb{C}) = \{\lambda g : \lambda \in \mathbb{C}, g \in O(k, \mathbb{C})\}$, and G is a maximal connected linear group acting on M by right multiplication.

By Witt's theorem on symmetric bilinear forms (see, e.g., [Ar] and [TT1, Lemma 2.8]) G acts analytically and transitively on M. More precisely, if $x_0 \in M$ then M is the G-orbit of x_0 , and if G_{x_0} is the stability subgroup at x_0 , then it is easy to verify that G_{x_0} is isomorphic to $SO(k - n, \mathbb{C})$. Moreover, the map $G_{x_0}g \to x_0g$ is an analytic diffeomorphism of $G_{x_0} \setminus G$ onto M (see, e.g., [Va, Theorem 2.9.4]). Thus M is an analytic manifold of complex dimension nk - n(n + 1)/2 (this also follows from [TT1, Lemma 2.9] and the implicit function theorem for analytic functions [Hö, Theorem 2.1.2]).

Now let us show that G' acts *freely* on M, i.e., the stability subgroup G'_x is $\{1_{G'}\}$ at every $x \in M$. Indeed, if $x \in M$ then by the assumption rank(x) = n there exist n columns $x_{i_1} \cdots x_{i_n}, i_1 < \cdots < i_n$, of x such that the $n \times n$ matrix x_n formed by them is invertible. So g'x = x implies that $g'x_n = x_n$ or $g' = x_n x_n^{-1} = 1_{G'}$. Now let us recall the definition of differential operators on a complex manifold M of dimension m (see, e.g., [He, Chapter 10]).

If (φ, U) is a local chart on M with $\varphi(p) = (x_1(p), \ldots, x_m(p)) \in \mathbb{C}^m, p \in U$, and $f \in C^{\infty}(M)$, set $f^* = f \circ \varphi^{-1}$: $\varphi(U) \subset \mathbb{C}^m \to \mathbb{C}$. Set $\partial_i = \partial/\partial x_i$ $(1 \leq i \leq m)$ and if $\alpha = (\alpha_1, \ldots, \alpha_m)$ is an *m*-tuple of indices $\alpha_i \geq 0$ we put $D^{(\alpha)} = \partial_1^{\alpha_1} \cdots \partial_m^{\alpha_m}$. Then a linear transformation $D: C_c^{\infty}(M) \to C_c^{\infty}(M)$ is called a *differential operator* on M if the following condition is satisfied: For each $p \in M$ and each chart $(\varphi, U), p \in U$, there exists a locally finite set of functions $h_{(\alpha)} \in C^{\infty}(U)$ such that for each $f \in C_c^{\infty}(M)$ with support contained in U,

$$\begin{cases} [Df](p) = \sum_{(\alpha)} h_{\alpha} \left[D^{(\alpha)} f^* \right] (\varphi(p)) & \text{if } p \in U, \\ [Df](p) = 0, & \text{if } p \notin U. \end{cases}$$
(2.4)

If M is a complex analytic manifold then a differential operator D is called a *holomorphic* or *complex analytic differential operator* if the functions $h_{(\alpha)}$ in Eq. (2.4) are holomorphic (or complex analytic).

By Hilbert's fifth problem G (resp. G') can be equipped with an analytic structure (see, e.g., [M-Z]) so that they act analytically on M. Let $D^{\omega}(M)$ denote the algebra of (complex) analytic differential operators on M.

Now consider a global *G*-transformation group on an analytic manifold M (see, e.g., [Pa] or [Va, 2.16]). Let φ : $G \times M \to M$ $((g, x) \to g \cdot x, g \in G, x \in M)$ denote the global action of G on M. For $x \in M$, $f \in C^{\infty}(M)$ we define $(\Phi(g)f)(x) = f(g^{-1} \cdot x)$. Let \mathfrak{g} denote the Lie algebra of G and $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of G. Then for $X \in \mathfrak{g}$ and $x \in M$ we define

$$d\Phi(X)_x(f) := \left(\frac{d}{dt}f(\exp(-tX) \cdot x)\right)_{t=0}$$
(2.5)

for all f defined and C^{∞} in a neighborhood of x. The map $X \to d\phi(X)$ is a homomorphism of \mathfrak{g} into the Lie algebra of analytic vector fields on M. Therefore it extends to a homomorphism $a \to \widetilde{d\phi}(a), a \in \mathcal{U}(\mathfrak{g})$, of $\mathcal{U}(\mathfrak{g})$ into the algebra $\mathcal{D}^{\omega}(M)$ of analytic differential operators on M (see [Va, Lemma 2.16.1]), where if $a = X_1 \cdots X_r$ ($X_i \in \mathfrak{g}$) then

$$\widetilde{d\phi}(a)_x(f) = \left. \left(\frac{\partial}{\partial t_1} \cdots \frac{\partial}{\partial t} f(\exp(-t_r X_r) \cdots \exp(-t_1 X_1) \cdot x) \right|_0, \tag{2.6}$$

where the suffix 0 indicates that the derivatives are taken when $t_1 = \cdots = t_r = 0$. For our problem we consider the cases when $\Phi(g') = L(g')$ and $\Phi(g) = R(g)$, where $(L(g')f)(x) = f((g')^{-1}x)$ and (R(g)f)(x) = f(xg) for $g' \in G'$, $g \in G$, and $x \in M$. Let $\widetilde{\mathcal{U}}(g')$ and $\widetilde{\mathcal{U}}(\mathfrak{g})$ denote the images of $\mathcal{U}(\mathfrak{g}')$ and $\mathcal{U}(\mathfrak{g})$ under the maps $d\widetilde{L}$ and $d\widetilde{R}$, respectively.

DEFINITION 2.1 A differential operator D of $\mathcal{D}^{\omega}(M)$ is said to be right (resp. left)-invariant if D(R(g)f) = R(g)(Df) (resp. D(L(g')f) = L(g')(Df)) for all $g \in G$ (resp. $g' \in G'$), and for all $f \in C^{\infty}(M)$.

THEOREM 2.2 Let $\mathcal{D}_l^{\omega}(M)$ (resp. $\mathcal{D}_r^{\omega}(M)$) denote the subalgebra of $\mathcal{D}^{\omega}(M)$ of all left (resp. right)-invariant analytic differential operators on M. Then

- (i) $\mathcal{D}_l^{\omega}(M) = \widetilde{\mathcal{U}}(\mathfrak{g}) \text{ and } \mathcal{D}_r^{\omega}(M) = \widetilde{\mathcal{U}}(\mathfrak{g}'),$
- (ii) the commutant of D^ω_l(M) in D^ω(M) is D^ω_r(M), and vice-versa. Moreover, the centres of D^ω_l(M) and D^ω_r(M) coincide with the subalgebra D^ω_l(M) ∩D^ω_r(M).

PROOF. (i) Let $X \in \mathfrak{g}', g \in G, x \in M$ and $f \in C^{\infty}(M)$. Then

$$dL(X)(R(g)f)(x) = \frac{d}{dt} \left((R(g)f)(\exp(-tX)x) \right)_{t=0}$$
$$= \frac{d}{dt} (f(\exp(-tX)xg))_{t=0},$$

while

$$R(g)(dL(X)f)(x) = (dL(X)f)(xg)$$
$$= \frac{d}{dt}(f(\exp(-tX)xg))_{t=0}.$$

Thus any vector field $\tilde{X} = dL(X) \in \widetilde{\mathcal{U}}(\mathfrak{g}')$ is right-invariant, and it follows immediately that $\widetilde{\mathcal{U}}(\mathfrak{g}') \subset \mathcal{D}_r^{\omega}(M)$. Similarly we have $\widetilde{\mathcal{U}}(\mathfrak{g}) \subset \mathcal{D}_l^{\omega}(M)$. Let us show that $\mathcal{D}_r^{\omega}(M) \subset \widetilde{\mathcal{U}}(\mathfrak{g}')$ and $\mathcal{D}_l^{\omega}(M) \subset \widetilde{\mathcal{U}}(\mathfrak{g})$.

Let \mathcal{L} denote the Lie algebra of all right-invariant analytic vector fields on M. Then \mathcal{L} is an *involutive analytic system* (see [Va, p. 25] for the definition), i.e., if U is an open subset of M and X, Y are right-invariant vector fields on M then [X, Y] is (obviously) right-invariant. Then the Global Frobenius Theorem (see, e.g., [Va, Theorem 1.3.6]) implies that: given any point of M, there is one and exactly one maximal *integral manifold* S of \mathcal{L} containing that point, i.e., S is a connected analytic submanifold of M and for each $y \in S$, \mathcal{L}_y is the tangent space $T_y(S)$. In fact since \mathcal{L} is an infinitesimal group [Pa, Theorem IV, p. 98] implies that S is the image of a unique connected Lie transformation group H of M. Since G' is the largest linear group acting on M by left multiplication and $dL(\mathfrak{g}') \subset \mathcal{L}$ it follows that $G' \subset H$, and hence, G' = H. It follows that if $\{X_1, \ldots, X_{n^2}\}$ is a basis of \mathfrak{g}' then $\{\tilde{X}_1, \ldots, \tilde{X}_{n^2}\}$, where $\tilde{X}_i = dL(X_i), 1 \leq i \leq n^2$, is a basis for right-invariant analytic vector fields on M. Therefore if $D \in \mathcal{D}_r^{\omega}(M)$ then we can find a unique set of locally finite functions $h_{(\alpha)} \in C^{\omega}(M)$ such that

$$D = \sum_{(\alpha)} h_{(\alpha)} \tilde{X}^{(\alpha)}.$$
 (2.7)

Since the $\tilde{X}^{(\alpha)}$ are right-invariant, we have

$$D = D^{r_g} = \sum_{(\alpha)} h^{r_g}_{(\alpha)} \tilde{X}^{(\alpha)} \qquad (g \in G).$$

$$(2.8)$$

The relations (2.7) and (2.8) imply that all the $h_{(\alpha)}$ are right-invariant, and since G acts transitively on M, they must be all constant. Thus $D \in \widetilde{\mathcal{U}}(\mathfrak{g}')$ for all $D \in \mathcal{D}_r^{\omega}(M)$, and hence, $\mathcal{D}_r^{\omega}(M) \subset \widetilde{\mathcal{U}}(\mathfrak{g}')$. To show that $\mathcal{D}_l^{\omega}(M) \subset \widetilde{\mathcal{U}}(\mathfrak{g})$ we need the following

LEMMA 2.3 For each $x \in M$ let $G'x = \{g'x : g' \in G'\}$ denote the orbit of x. Let $\mathcal{X} = M/G'$ be the set of all orbits G'x, $x \in M$, and define $\pi : M \to \mathcal{X}$ by assigning to each $x \in M$ its orbit G'x. Then $(M, \mathcal{X}, \pi, G')$ is a principal G'-bundle.

PROOF. Define $\gamma: M \times G' \to M \times M$ by $\gamma(x, g') = (x, g'x)$ and $\Gamma = \gamma(M \times G') = \{(x, g'x) : x \in M, g \in G\}$. Then since G' acts freely on M, γ is injective. Now suppose that $\lim_{n\to\infty} x_n = x$, and $\lim_{n\to\infty} g'_n x_n = y$ for $x_n, x, y \in M$, $g'_n \in G$. The same argument used in the proof that G' acts freely on M implies that there exists a submatrix s[x] of x such that $s[x] \in G'$. If $s[x_n]$ denotes the corresponding submatrix of x_n then clearly $\lim_{n\to\infty} s[x_n] = s[x]$. So for n sufficiently large we may assume that $s[x_n] \in G'$. Then clearly $\lim_{n\to\infty} s^{-1}[x_n] = s^{-1}[x]$ and $\lim_{n\to\infty} g'_n s[x_n] = s[y]$. By the continuity of the action of G' on M we have $s[y] \in G'$. Write $g'_n = (g'_n s[x_n])s^{-1}[x_n]$ for sufficiently large n then $\lim_{n\to\infty} g'_n = s[y]s^{-1}[x]$. Set $g' = s[y]s^{-1}[x]$, then $g' \in G'$, $\lim_{n\to\infty} g'_n = g'$, and $\lim_{n\to\infty} g'_n x_n = g'x = y$. Thus Γ is closed in $M \times M$, and γ is a homeomorphism of $M \times G$ onto Γ . Now all the hypotheses of [Va, Theorem 2.9.10] are met, and we can conclude that there exists an analytic structure on \mathcal{X} such that π is an analytic immersion (i.e., $(d\pi)_x$ is injective for all $x \in M$). Moreover for each $p \in \mathcal{X}$ we can select an open subset \mathcal{Y} onto $\pi^{-1}(\mathcal{Y})$, such that

$$\xi(h'g', y) = h'\xi(g', y) \qquad (g', h' \in G, \ y \in \mathcal{Y}).$$

That is, in other words, $(M, \mathcal{X}, \pi, G')$ is a principal G'-bundle. Now let us finish the proof of part (i) of the theorem.

Since G acts analytically and transitively on the analytic manifold M [Va, Lemma 2.9.2] implies that for each $x \in M$ the map $r: g \to xg \ (g \in G)$ is an *analytic submersion* of G onto M (i.e., $(dr)_g$ is surjective for all $g \in G$). It follows that if $\{Y_1, \ldots, Y_d\}$ is a basis of \mathfrak{g} then there exists a basis for analytic vector fields of M of the form $\{\tilde{Y}_1, \ldots, \tilde{Y}_m\}$, where $m = \dim(M)$, and each $\tilde{Y}_i = dR(Y_j)$ for some $j, 1 \leq j \leq d$. It follows that every $D \in \mathcal{D}_l^{\omega}(M)$ can be expressed as

$$D = \sum_{(\alpha)} k_{(\alpha)} \tilde{Y}^{(\alpha)}, \qquad (2.9)$$

where $\{k_{(\alpha)}\}$ is a set of locally finite analytic functions. Since the $\tilde{Y}^{(\alpha)}$ are left-invariant, we have

$$D = D^{l_{g'}} = \sum_{(\alpha)} k_{(\alpha)}^{l_{g'}} \tilde{Y}^{(\alpha)} \qquad (g' \in G').$$
(2.10)

The relations (2.9) and (2.10) imply that all the $k_{(\alpha)}$ are left-invariant. By Lemma 2.3 a basic open set M is diffeomorphic to $G' \times \mathcal{Y}$ where \mathcal{Y} is an open subset of \mathcal{X} . A typical point in that basic open set is, for example, of the form $x = (*g'*) \in M$. A function $k_{(\alpha)}$ that is left-invariant will be independent of the n^2 variables in the block containing g', and since we can let g' occupy any block in the matrix x it follows that $k_{(\alpha)}$ must be constant. Hence $D \in \widetilde{\mathcal{U}}(\mathfrak{g})$, and the proof of part (i) is completed.

(ii) The proof of part (ii) depends on the following

LEMMA 2.4 Let $D \in \mathcal{D}^{\omega}(M)$ then the following statements hold.

- (i) [dL(X), D] = 0 for all $X \in \mathfrak{g}'$ if and only if D(L(g') = L(g')D for all $g' \in G$.
- (ii) [dR(Y), D] = 0 for all $Y \in \mathfrak{g}$ if and only if D(R(g)) = R(g)D for all $g \in G$.

PROOF. Since both G' and G are connected the two statements are similar, so we will only prove (i). To prove (i) we first consider $g' = g'(t) = \exp tX$, $X \in \mathfrak{g}'$; then we have

$$L(g')DL((g')^{-1}) = (\exp(dL(tX))D.$$

It follows that

$$L(g')D = DL'(g) \iff [L(X), D] = 0.$$

Since G' is connected, G' is generated by the image of the exponential map (cf. [Go, Cor. I, p. 6.9]), i.e., an arbitrary element g' of G' can be expressed in the form $g' = \exp(X_1) \exp(X_2) \cdots \exp(X_r)$, $X_i \in \mathfrak{g}'$, it follows from [Na, Prop. 2.10.10] that

$$[dL(X), D] = 0, \,\forall X \in \mathfrak{g}' \Longleftrightarrow L(g')D = DL(g'), \,\forall g' \in G'.$$

Now part (i) of the theorem and Lemma 2.4 imply that the commutant of $\mathcal{D}_{l}^{\omega}(M)$ in $\mathcal{D}^{\omega}(M)$ is $\mathcal{D}_{r}^{\omega}(M)$, and vice-versa. Finally, by definition the centre of $\mathcal{D}_{l}^{\omega}(M)$ is the subalgebra of elements of $\mathcal{D}_{l}^{\omega}(M)$ which commute with all elements of $\mathcal{D}_{l}^{\omega}(M)$. So obviously the centre of $\mathcal{D}_{l}^{\omega}(M)$ and similarly the centre of $\mathcal{D}_{r}^{\omega}(M)$ coincide with $\mathcal{D}_{l}^{\omega}(M) \cap \mathcal{D}_{r}^{\omega}(M)$.

Now let us consider the Lie transformation group $G' \times G$ acting on the analytic manifold M, where $G' = \operatorname{GL}(n, \mathbb{C}), G = \operatorname{Sp}(2k, \mathbb{C}), M = \{x \in \mathbb{C}^{n \times 2k} : xs_k x^t = 0, \operatorname{rank}(x) = n\}, k \geq n$, and

$$s_k = \left[\begin{array}{cc} 0 & -I_k \\ I_k & 0 \end{array} \right]$$

with I_k denoting the identity matrix of order k.

Recall that $\operatorname{Sp}(2k, \mathbb{C})$ is the group of all complex $2k \times 2k$ matrices g satisfying $gs_kg^t = s_k$. Then by Witt's theorem on skew-symmetric bilinear form (see, e.g., [Ar] and [TT2, Lemma 1.7]) it follows that G acts analytically and transitively by right multiplication on M. Obviously G' acts freely by left multiplication on M, and G and G' are both connected. Thus we have

THEOREM 2.5 For $k \ge n$ let $G = \text{Sp}(2k, \mathbb{C})$, $G' = \text{GL}(n, \mathbb{C})$, and $M = \{x \in \mathbb{C}^{n \times 2k} : xs_kx^t = 0, \text{ rank}(x) = n\}$. Then Theorem 2.2 holds for this pair of Lie transformation groups acting on M.

Finally, let p, q, and k be positive integers such that $k \ge \max(p, q)$ and consider $G' = \operatorname{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C}), \ G = \{(g, g^{\checkmark}) : g \in \operatorname{GL}(k, \mathbb{C}), \ g^{\checkmark} = (g^{-1})^t\} \approx \operatorname{GL}(k, \mathbb{C}), \text{ and }$

$$M = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{C}^{(p+q) \times k} : x_1 \in \mathbb{C}^{p \times k}, \ x_2 \in \mathbb{C}^{q \times k}, \\ x_1 x_2^t = 0, \ \operatorname{rank}(x_1) = p, \ \operatorname{rank}(x_2) = q \right\}.$$

Then by Witt's theorem on quadratic forms, [TT3, Lemma 1.1] and [TT4, Theorem 5.1], it follows that G acts analytically and transitively on M via the action

$$\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right], g \right) \longrightarrow \left[\begin{array}{c} x_1g \\ x_2g^{\checkmark} \end{array} \right]$$

Obviously G' acts on M freely via the action

$$\left(\left(g_1', g_2'\right), \left[\begin{array}{c} x_1\\ x_2 \end{array}\right] \right) \longrightarrow \left[\begin{array}{c} g_1' x_1\\ g_2' x_2 \end{array}\right], \qquad g_1' \in \mathrm{GL}(p, \mathbb{C}), \ g_2' \in \mathrm{GL}(q, \mathbb{C}).$$

Moreover, both G and G' are connected. Thus we have

THEOREM 2.6 Theorem 2.2 holds for the pair of Lie transformation groups G, G' acting on the analytic manifold M described above.

3 CONCLUSION

In [TT5] we used the duality theorem for commutants in $\mathcal{D}^{\omega}(M)$ with $G = \operatorname{GL}(k,\mathbb{C})$, $G' = \operatorname{GL}(n,\mathbb{C})$, $M = \{x \in \mathbb{C}^{n \times k} : x \text{ of maximum rank}\}$ to find the Casimir invariants of the infinite-dimensional group $\operatorname{GL}(\infty,\mathbb{C})$. In turn, a set of generators of these Casimir invariants determine the irreducible unitary representations of the group $U(\infty)$. We hope that Theorems 2.2, 2.5, and 2.6 will allow us to find the Casimir invariants of some other infinite-dimensional groups.

ACKNOWLEDGEMENTS: The author was supported by a Carver Research Initiative Grant during the preparation of this paper. He also wishes to thank Ms. Cymie Wehr for her patience in preparing this manuscript.

TUONG TON-THAT

References

- [Ar] E. Artin, Geometric Algebra, Wiley-Interscience Publication, John Wiley & Sons, New York (1988), reprint of the 1957 original.
- [D-TT] O. Debarre and T. Ton-That, Representations of SO(k, C) on harmonic polynomials on a null cone, Proc. Amer. Math. Soc. 112 (1991), 31–44.
- [Go] R. Godement, Introduction à la Théorie des Groupes de Lie, 2 vols., Publ. Math. Univ. Paris VII, Université de Paris VII, Paris, 1982.
- [He] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [Hö] L. Hörmander, An Introduction to Complex Analysis in Several Variables, third edition, North-Holland, Amsterdam, 1990.
- [M-Z] D. Montgomery and L. Zippin, *Topological Transformation Groups*, Robert E. Krieger, Huntington, NY, 1974, reprint of the 1955 original.
- [Na] R. Narasimhan, Analysis on Real and Complex Manifolds, North-Holland Mathematical Library, vol. 35, North-Holland, Amsterdam, 1985, reprint of the 1973 second edition.
- [Pa] R. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957).
- [TT1] T. Ton-That, Lie group representations and harmonic polynomials of a matrix variable, Trans. Amer. Math. Soc. 216 (1976), 1–46.
- [TT2] T. Ton-That, Symplectic Stiefel harmonics and holomorphic representations of symplectic groups, Trans. Amer. Math. Soc. 232 (1977), 265– 277.
- [TT3] T. Ton-That, Sur la décomposition des produits tensoriels des représentations irréductibles de $GL(k, \mathbb{C})$, J. Math. Pures Appl. (9) 56 (1977), 251–261.
- [TT4] T. Ton-That, Dual representations and invariant theory, Representation Theory and Harmonic Analysis (T. Ton-That, et al., eds.), Contemp. Math., vol. 191, American Mathematical Society, Providence, 1995, pp. 205–221.
- [TT5] T. Ton-That, Poincaré-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: I, J. Phys. A 32 (1999), 5975–5991.
- [TT-T] T. Ton-That and T.D. Tran, Poincaré's proof of the so-called Birkhoff-Witt theorem, Rev. Histoire Math. 5 (1999), 249–284.

[Va]	V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representa-
	tions, Graduate Texts in Math., vol. 102, Springer-Verlag, New York,
	1984, reprint of the 1974 original, Prentice-Hall, Englewood Cliffs, NJ.

[We] H. Weyl, The Classical Groups: Their Invariants and Representations, second edition, Princeton University Press, Princeton, NJ, 1946.

> Department of Mathematics The University of Iowa Iowa City, IA 52242-1419 USA tonthat@math.uiowa.edu